Remarks on Schur's Conjecture

نویسندگان

  • Filip Moric
  • János Pach
چکیده

Let P be a set of n points in R. It was conjectured by Schur that the maximum number of (d− 1)-dimensional regular simplices of edge length diam(P ), whose every vertex belongs to P , is n. We prove this statement under the condition that any two of the simplices share at least d− 2 vertices and we conjecture that this condition is always satisfied.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on Frankl's conjecture

First a few reformulations of Frankl’s conjecture are given, in terms of reduced families or matrices, or analogously in terms of lattices. These lead naturally to a stronger conjecture with a neat formulation which might be easier to attack than Frankl’s. To this end we prove an inequality which might help in proving the stronger conjecture.

متن کامل

Further Remarks on a Problem of Moser and a Conjecture of Mawhin

Multiplicity results for both periodic and anti-periodic forced oscillations for the pendulum equation are given on the background of a detailed exposition of the results related to the so-called problem of Moser and to the Mawhin conjecture.

متن کامل

Alperin’s Conjecture for Algebraic Groups

We prove analogues for reductive algebraic groups of some results for finite groups due to Knörr and Robinson from ‘Some remarks on a conjecture of Alperin’, J. London Math. Soc (2) 39 (1989), 48–60, which play a central rôle in their reformulation of Alperin’s conjecture for finite groups.

متن کامل

Proof of the Kurlberg-rudnick Rate Conjecture 0.4 Geometric Approach 0.5 Side Remarks

In this paper we give a proof of the Hecke quantum unique ergodicity rate conjecture for the Berry-Hannay model. A model of quantum mechanics on the two dimensional torus. This conjecture was stated in Z. Rudnick’s lectures at MSRI, Berkeley 1999 and ECM, Barcelona 2000.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012